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LIQUID CRYSTALS, 1995, Vot. 19, No. 1, 57-63 

Weak-anchoring effects on a Freedericksz transition 
in an annulus 

by P. J. BARRATT and B. R. DUFFY" 
Department. of Mathematics, University of Strathclyde, Glasgow G1 lXH, Scotland 

(Received 31 August 1994; in final form 12 December 1994; accepted 27 December 1994) 

This paper investigates the effect of weak anchoring on static orientation patterns in a sample 
of nematic liquid crystal confined to a cylindrical annular geometry, in the presence of a magnetic 
field. The particular arrangemcnt considered in detail is that in which a magnetic field is applied 
in the azimuthal direction to a sample of liquid crystal that is initially uniformly aligned parallel 
to the cylindrical axis and is weakly anchored at the inner cylinder, but strongly anchored at the 
outer cylinder. A static solution of the non-linear continuum equations is presented which 
suggests a possible experiment for evaluating the surface elastic coefficient k24. In addition, a 
linear stability analysis based on the dynamic theory yields results for critical phenomena in 
agreement with those derived from the non-linear solution. 

1. Introduction 
In recent years there have been a number of studies 

concerning the orientation patterns of nematic liquid 
crystals confined in cylindrical geometries when there is 
weak anchoring at the boundaries. In particular, such 
studies have led to the first measurements of the surface 
elastic constant k24 by Crawford and co-workers (see, for 
example 111, and references therein). They used NMR 
techniques to ascertain the orientation patterns of nematics 
in sub-micrometer cylindrical cavities (namely, micropo- 
res in membranes), from which they could infer values of 
k24 (and of anchoring coefficients). Values of kZ4 have also 
been determined from optical measurements of orientation 
patterns in super-micrometer cavities (Polak et al. [2 ] ) ,  and 
from measurements of periodic patterns in hybrid aligned 
layers (Sparavigna et ul. [3]). These studies indicate that 
kZ4 is of the same order as the bulk elastic constants. 
Further means of determining k24 have been proposed by 
Kralj and h m e r  [4], based on detailed calculations of 
energy states of nematics in cylindrical cavities. 

In this paper we describe a possible alternative 
arrangement for measuring k24, based on the observation 
of Freedericksz transitions in a cylindrical annulus. Of 
pertinence to this study are the analyses of Leslie [5] and 
of Atkin and Barratt 161, which consider a nematic sample 
in an annulus, strongly anchored at the boundaries. Leslie 
investigates the case in which the initial orientation is 
everywhere azimuthal with a magnetic field applied 
radially outwards, while Atkin and Barratt examine the 
case when the initial orientation is uniformly aligned 
parallel to the common axis, and the magnetic field is 

* Author for correspondence. 

applied in either the azimuthal or radial direction. Both 
papers demonstrate that as the field strength exceeds a 
critical value, a distorted configuration becomes available 
which is energetically favourable compared to the initial 
orientation pattern. Thus one anticipates that the distorted 
solution occurs in preference to the uniform alignment, 
and hence a Freedericksz transition results. The relation- 
ships obtained in the analyses between the critical field 
strength and various material parameters provide an 
experimentalist with possible methods for either determin- 
ing information about the Frank elastic constants kll ,  k22 

and k33 or checking the continuum theory of Ericksen [7] 
and Leslie [8]. 

Rapini and Papoular [9] proposed a simple form for the 
surface free energy per unit area of a nematic, and 
examined the effect of weak anchoring on the classical 
Freedericksz transition in a sample confined by parallel flat 
plates. Jenkins and Barratt [ 101 employed a variational 
principle to obtain the condition for balance of couple at 
a nematic-liquid boundary by endowing the interface with 
a rather general surface free energy per unit area. Barratt 
[ 1 I] used these ideas in proposing a model for disclination 
lines in cylindrical samples of nematics; he found that 
k24 appears in the balance-of-couple condition. Palffy- 
Muhoray et ul. 1121 have recently presented results for 
saddle-splay and mechanical instabilities in nematics 
confined to a cylindrical annular geometry. They demon- 
strate that contigurations in which the alignment is either 
everywhere azimuthal or everywhere radial become 
unstable when the outer radius is increased beyond some 
critical value. In the event of weak anchoring on one 
boundary and strong anchoring on the other, they observe 
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58 P. J. Barratt and B. R. Duffy 

that a critical relation exists which involves k24 and various 
anchoring coefficients, as well as the cylindrical radii. 
An obvious difficulty in using their results to determine k24 
(by observing critical phenomena) is the practicality of 
increasing the outer radius continuously. 

Here we consider a similar experimental arrangement 
to that of Palffy-Muhoray et al. [12], but involving 
the application of a magnetic field; this overcomes the 
above-mentioned difficulty of obtaining critical values in 
their arrangements. To this end, we investigate the 
problem in which the liquid crystal is confined between 
two coaxial circular cylinders, with the initial orientation 
uniformly parallel to the common axis of the cylinders, 
and a magnetic field is applied in the azimuthal direction. 
After outlining in 8 2 the continuum theory required for the 
ensuing analysis, we present in $ 3  a novel exact static 
solution of the non-linear equations when there is weak 
anchoring on the inner cylinder and strong anchoring on 
the outer cylinder. For ease in calculations we employ a 
particularly simple formulation for the interfacial energy 
to model the weak anchoring condition. It is found that no 
distortion of the initial configuration occurs until the 
applied field strength exceeds a critical value which is 
dependent upon the elastic constant kZ4 as well as other 
parameters. The constant k24 may be positive or negative, 
and the type of solution obtained in $ 3  is found to be 
dependent on its sign. In $ 4, we perform a linear stability 
analysis of the uniform static configuration with respect to 
time dependent perturbations in both the director and 
velocity fields. It is shown that in this case the principle 
of exchange of stabilities holds and one can recover the 
critical relation obtained in $ 3. In addition we consider 
the effect of adopting a more general expression for the 
interfacial energy. 

Commonly, threshold values for Freedericksz transi- 
tions have been derived via minimization of free energy 
(using Euler-Lagrange equations) or via the Ericksen- 
Leslie equations with the velocity assumed to be zero. 
However, here we choose to follow Laidlaw [ 131 and 
allow for solutions with non-zero velocity; in such cases 
it is essential that the full Ericksen-Leslie equations be 
employed. This approach has the additional advantage that 
one may be able to establish that an exchange of stabilities 
occurs; this would then preclude the possibility of an 
oscillatory instability, as found, for example, in some of 
the cases considered by Laidlaw [13]. 

2. The continuum equations 
Here we summarize the equations proposed by Ericksen 

[7] and Leslie 181 to describe the isothermal behaviour of 
incompressible nematic liquid crystals. In Cartesian tensor 
notation the relevant equations for determining the 
velocity vector field v and the director n are the constraints 

tv,,,=O, n , n , = l ,  

together with the balance laws 

and the constitutive equations 

i;, = xlnkn,&,rz,n, + x y q N ,  + x-irz;N, + xd,, 
f W'$nkAk, f WWkAk,, 

gi = - ylNi - y 2 A ; k n k ,  

where 

A ,  i(t~r~/ + \ ' ; , I ) ,  N ;  h, - f ( v I , ,  ~ L J , . O ~ Z ~ .  ( 5 )  

a dot denoting the material derivative. Here p is the 
density; a micro-inertial term in (3) has been neglected, as 
is commonly done. The quantities p and arc arbitrary 
scalar functions arising from the constraints ( 1  ), while F 
represents any external body lorce present and G any 
generalized external director body force acting. W is the 
stored energy per unit volume, and we adopt the 
Oseen-Frank form 

2W = k22ni,jnl.j + (kll - k22 - k24)~1i,;n,,, 

+ k ~ n , . ; ~ ; . ,  + (hi ~ k&,n,nk.,nL., . (6) 

In the present context the material parameters are 
constants satisfying the relations = x i  - and 
77. = - xg, and (from Ericksen [14]) the inequalities 

ki I 2 0, k22 2 0, k33 2 0, [k241 5 k??. 

(kri - k 2 2 - k 2 4 / 5 k i i 3  (7) 

- k 2 2 ~ k 2 4 ~ m i n { k 1 1 . k ~ 7 , 2 k 1 1  ~ k2?] (8) 

(and that k24 = k t  I only if k22 = k23 = k i  In  the absence 
of information to the contrary, we must presumably allow 
for the possibility that k24 < 0. 

Following Ericksen [IS]  we consider the resultant 
external body forces due to the presence of an applied 
magnetic field H to have the form 

F; = { x , H ,  + xaHqnqnl,lHp,;, G; = x,H,n,H,, (9) 

and the associated magnetic energy per unit volume W, to 
be given by 

which in turn imply that 

2Wf= - {XLH,,H,  + la (Hpnp)2 ) ,  (10) 

where xa = X , I  - xl, with X , I  and xl denoting the constant 
magnetic susceptibilities parallel and perpendicular to the 
molecular axis, respectively. Henceforth we assume that 
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A Freedericksz transition in an annulus 59 

za is strictly positive. Also, since the inclusion of gravity 
in calculations only leads to a modification in the pressure 
we ignore it in the following analysis. 

To model weak anchoring at an interface S, one endows 
the interface with a surface energy w per unit area. 
Assuming that w depends only upon the director n and the 
outward surface normal v, Jenkins and Barratt [ 101 derived 
the balance-of-couple condition 

aw aw 
~ v, +-=pin, on S, 
h i , ,  ani 

where fil is an arbitrary scalar and 

w = ~ [ ( v - n ) ~ ] .  (12) 

(The Rapini-Papoular form [9] is w = +WO[ 1 - (v  - n)2], 
with wo a constant.) If in addition there is a preferred 
orientation t at the surface that minimizes w (sometimes 
called the ‘easy axis’) then we still employ (1 1) but with 

(13) w = w[(v - n)2, (t - II)~]. 

3. Solution of the non-linear equilibrium equations 
We examine the situation in which a sample of nematic 

liquid crystal confined between two coaxial circular 
cylinders of radii rl and r2, where r2 > rl, is weakly 
anchored at the inner cylinder and strongly anchored at the 
outer cylinder. We assume that the initial director 
orientation is uniformly parallel to the axis of the 
cylinders, and consider the application of an azimuthal 
magnetic field H. Choosing cylindrical polar coordinates 
r, 4, z such that the z axis and the cylinders’ axis are 
coincident, we assume H depends only upon the radial 
coordinate r ,  so that the magnetic field has physical 
components 

H , = O ,  H $ = H l r ,  H,=O, (14) 

where H is a constant. In the present situation it seems 
reasonable to seek director field solutions whose physical 
components have the form 

n, = 0, n6 = sin 8(r),  n, = cos 8(r),  0 5 8 5 n12, 
(15) 

whereupon the problem reduces to solving the non-linear 
ordinary differential equation 

d28 1 do 
d? r dr k22 - + k22 ~ - + { 2(k22 - k33)  sin2 0 - k22 

sin 0 cos 8 
+ x a H 2 )  =0,  (16) 

subject to appropriate boundary conditions. Here we 
examine the situation in which there is strong anchoring 
on the outer cylinder, which requires 

O(r2) = 0, (17) 

and weak anchoring on the inner cylinder, with w having 
the form (12), whereupon the condition (1  1) reduces to 

d8 sin 6 cos 8 
dr r 

k22 ~ - k24 = 0  on r = r l .  (18) 

We note that with n restricted to lie in the local #, z-plane, 
our choice for the functional form for the interfacial energy 
means that w takes the constant value w(0) and so does not 
affect the balance-of-couple condition (1 1). We also make 
the observation that a solution of the form (15) with 
- n12 5 8 5 0 parallels the one presented here. 

It is immediately obvious that the uniform orientation 
pattern 

8(r) = 0, rI 5 r 5 r2 (19) 

is a solution of (16) satisfying (17) and (18), and in the 
absence of any applied magnetic field also minimizes 
the total free energy of the system, E ,  given by 

E = (W + Wf)dV + I,, wdS, (20) 

where V i s  the volume occupied by the sample and SI is 
the bounding surface of the inner cylinder. However, 
distorted patterns of the form (15) are also possible and, 
with the change of variable 

r = rl exp (Is), (21) 

one seeks solutions of 

d 2 0  
ds2 

2a sin3 8 cos 8 + h sin 6 cos 6 = 0 (22) -- 

subject to the conditions 

0 = 0  on s = l  

and 

d8 
ds 
-- -/?sinOcosO on s = O  

where 

(25)  

With (24), equation (22) integrates once to yield 

+ h(sin2 8, - sin2 6 )  = F(O, 00, h), (26) 

where 80 = O ( 0 ) .  Since the right hand side of (26) must be 
non-negative for all possible values of 8, it follows that, 
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60 P. J. Rarratt and B. R. Duffy 

- [ { F($,  Oil, h )  1 ''2d$, rlOI1ds 2 0. 

for a continuous transition to occur, a necessary condition 
is 

h + /j2 > 0, i.e. x,H2 > (k;2 - kf4)/k2*, (27) 

which, with (7)4, means that a distorted solution (15) is not 
possible in the absence of a magnetic field (in contrast with 
the situation considered by Palffy-Muhoray et al. [IZ]). 

An inspection of (24) indicates that two distinct types 
of solution are possible, depending upon the sign of k24 
and hence that of  p. When 

p < 0 (28) 

it follows from (24) that the monotonic distortion 

I - y =  . i:{F($,Oo,h)}- '/'d$, 0 ~ ~ ~ 1 ,  

I := 1; { F(d, 00, h ) ]  ~ "'do. 

(29) 

is a solution of (22), (23) and (24), where h and $0 must 
satisfy thc relation 

(30) 

To determine the critical field H, at which a smooth 
transition from the uniform axial orientation to a distorted 
orientation pattern is possible, one needs to consider the 
three cases 

( i )  xJ/: > kzz. ( i i )  X,,H? = kz2, (iii) 0 <  xaH; <klr 
(31) 

scparately. Here, for the sake of brevity, wc consider only 
case ( i )  in detail. Thus assuming h is strictly positive and 
employing the change of variable 

sin U == m sin j., TTZ = 1 + - cos2 U() sin Oo (32) { ' ? } I i *  

in  (30)  wc obtain the relationship 

{ h cos' >. + stm'(sinJ L ~ sin' i r ~  ~ I" 

( 3 3 )  

1: I z. 

x ( I ~ M' sin2 R )  - 'I3 cos >.&, 
where 

(34) 

Taking the limit U o + O  (so that m-0)  one obtains the 
critical value H,, at which a distorted solution is possible, 
to be given by 

( 3 5 )  

In an attcmpt to determine which of the two solutions 
(19) and (29) i s  the more likely to occur, it is common 
practice to compare the total energies associated with each 
in  the expectation that the solution with least energy will 

= - 1 { 1 + ;] - 

be the one that is observed. Denoting by e(U0) the energy 
associated with the distorted solution (29) and by ~ ( 0 )  the 
energy associated with the uniform axial alignment, one 
finds that, over a length L of the cylinders, 

sin 28 dfl 
I:( 00) - E(0)  = - 

(30)  
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A Freedericksz transition in an annulus 61 

which yields where 

We recall that in the above analysis we have only 
considered the case when x,H2 exceeds k22 .  Solutions for 
the other two cases in (31) can be obtained similarly. 
All these solutions could prtive useful in the analysis of 
cylindrical samples of liquid crystal which have an 
isotropic core or cavity. However in the determination of 
elastic constants and anchoring coefficients it is the critical 
phenomena that are perhaps of more interest, and so we 
proceed, in the next section, to present a linear stability 
analysis of the problem. 

It must be admitted that wc have restricted the number 
of possible solutions by confining 0 to lie between 0 and 
nI2 and by allowing non-monotonic distortions to have 
only one extremum. However the experience of Dafermos 
[ 171 suggests that relaxing these conditions only leads to 
distorted configurations that are associated with higher 
energies than those examined here. 

4. A linear stability analysis 
A uniform static axial orientation, with director and 

velocity of the form 

nu = (0, 0,1), vo = 0, (42) 

is one obvious solution of the continuum equations (1)-(3) 
and the appropriate boundary conditions for the physical 
problem described in cj 3. We now consider the stability of 
this basic state with respect to small amplitude perturba- 
tions nl  and v1 that have physical components of the form 

(43) 
nl = (n,(r), n$(r), 0) exp (@, 

V I  = (0, v4(r), ~ ~ ( 4 )  exp (0th 

and for which the no  slip condition is satisfied on r = rl 
and r = 1-2, a weak anchoring condition is satisfied on r = rI 
and a strong anchoring condition is satisfied on r = r?. 
The representations (43) satisfy equations (1) identically, 
while a linearization of (2) and (3) results in a substantial 
uncoupling, and yields the equation for determining nb as 

(44) 
d2n$ 1 dn, 
dr’ r dr (l’? 

+--+ --+- n , = 0 .  

(47) 6 = p r 2  I Y I lkzz. 

Multiplying (45) by f i4,  the complex conjugate of n,, and 
integrating the resulting equation from s = 0 to s = 1 yields 

(h  + 6ae2‘s)\n412d.y = 0. (48) 

An integration by parts of the first integral in (48) and use 
of (46) now gives the relation 

(49) 

from which we conclude that CT must be real. It therefore 
follows that the principle of exchange of stabilities holds, 
which means that critical values for the onset of instability 
are given when CT is identically zero. Thus, for determining 
critical phenomena, we are only interested in solutions of 

subject to the boundary conditions (46). This is a classical 
type of eigenvalue problem and for a non-trivial solution 
one finds that 

( - h)1’2coth (( - h)’”), h < 0 1 h”* cot h>O 

- /?= 1 ,  h=O (51) 

with /?, h( 2 - Z2) and 1 as given in (25). For a fixed value 
of I ,  equation (5  1) gives the relationship between k24 and 
the critical magnetic field H ,  at which one anticipates the 
onset of a Freedericksz transition. Thus the measurement 
of H ,  will, assuming that k22  and za are known material 
parameters, determine the material parameter k24. The 
relationship (5 1) is illustrated pictorially in figure I (and 
we remark that h-+ - CXJ as /3+ - m, that h+n2 as 
p+ + m ,  and that h = n214 -- 2.47 when p = 0). This 
curve is multi-branched; however, since is restricted by 
(7)4, it follows that the only portion of the curve that is 
relevant (for a given ,) lies in 

- 1 S B S 1 ,  h l S h S h 2 ,  (52 )  

A utilization of the change of variable (21) reduces the 
problem to that of solving the second-order linear 

(h:/2), 4n2 < h2 < *2 vz, o, 
differential equation 

d ‘n4 
~ ds2 + ( h  + 8oe2”)nb = 0, (45) l=(-hl)“’coth((-hI)”*),  h l S O  i f l r l .  

where hl and h2 are defined by 

O s h l < $ n ’  i f l s l ,  

I = - h;2 

= h;l2 cot (hIl2 I 1, 

subject to the boundary conditions On this section of the curve, k24 is a continuous, 
single-valued, monotonic increasing function of H,. 

on s = 0, nb = 0 on s = 1, (46) One notes that the curve of /? versus h is the same whatever 3 = 
ds 
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62 P. J. Barratt and B. R. Duffy 

I 1 - 
-5 -2.5 

I 

Figure I .  Sketch of 1 

P 1 I 

J .  I h 
7.5 

5 1  

I 

(: = lk2dk22) as a function of the 
(reduced) critical magnetic field h (: = l2 (xaH:lk22 - l)), 
as given by equation (51), where 1: = I n  (r*/rl) .  The 
rectangles illustrate the regions of the h, P-plane that are 
relevant for typical values of 1 satisfying I <  1 (smaller 
rectangle) and 1 > 1 (larger rectangle). 

the value of I :  changing 1 merely changes the portion (52) 
of this curve that is relevant. 

From the diagram one can see that for 1 < I the critical 
value of h must be positive. The non-linear solution 
considered in detail in 3 corresponds to the case h > 0, 
and we observe that equation (35) relating k24 and H, is 
equivalent to (51) in this case. 

In the alternative situation where there is weak 
anchoring at the outer cylinder and strong anchoring at the 
inner cylinder. a similar analysis again yields the critical 
relationship (51) but with left hand side replaced by + p. 
When strong anchoring obtains at both boundaries, one 
finds the critical magnetic field to be given by 

h = n2, i.c. XaHz/k22 = 1 + (n/l)*, (54) 

which agrees with the result obtained by Atkin and Barratt 
161. With weak anchoring at both boundaries the critical 
field is given by 

h = ~ b2, i.e. ;CaHc/k?? = 1 - (kdk22)*,  ( 5 5 )  2 

which, we observe, is independent of 1. 
Lastly we consider briefly the consequence of mod- 

elling weak anchoring via the more general expression 
(13) for the surface energy, rather than (12). If, for 
simplicity, the easy axis t is taken to be the unit axial 
vector, then the boundary condition (46), is replaced by 

where 

With strong anchoring at the boundary s = 1, one clearly 

again obtains the critical conditions (5 I ) ,  but with /? 
replaced by p - U I ,  i.e. the above results again hold, but 
with the quantity lk24/k2~ modified by the (dimensionless) 
anchoring coefficient U , .  A plot of /3 - UI versus h is as 
in figure 1, and, with the assumption that 7Jl is negative, 
the relevant portion of the curve is again given simply by 
(52),  but with I replaced by I + / U I  1 in  (53), and by 1 - IU1 I 
in (53)2,:+. 

Similarly for weak anchoring on r = r2 the appropriate 
condition is 

and again (51) holds, but with - [j on the left hand side 
replaced by + ( p  + U2).  

5. Discussion and concluding remarks 
We have examined what appears to be a feasible 

experimental arrangement in which a uniform axially 
aligned nematic liquid crystal confined between concen- 
tric circular cylinders is subjected to an applied azimuthal 
magnetic field. The analysis predicts that the axial state 
will persist only until a critical field strength H ,  is 
exceeded. With a weak anchoring condition of the form 
(24) on either cylindrical boundary, one finds that H, 
depends on the surface elastic constant k24 via relations 
like (35 ) ,  (41) or (51). Thus observations of critical 
phenomena could, in principle, provide a means of 
determining kZ4. For a more general weak anchoring 
condition of the form (56) ,  measurements of H,  from two 
different set-ups, with two different values of rl, should 
yield information for determining both k24 and the 
anchoring coefficient I/,. 

We can estimate the critical axial current J ,  in the 
annulus that produces the threshold field H4 = HJr .  as 
follows [ 181. In the absence of time-varying electric fields, 
it follows from Maxwell’s equations that J ,  = 27iH,. 
But, in the case of weak anchoring at both boundaries, 
equation (55 )  gives the order-of-magnitude estimate 
H, - ( k 2 2 / ~ ~ ) ” ~ ,  so that J ,  - 2 7 ~ ( k ~ 2 / ~ ~ ) ” ~ .  With typical 
values for the material constants, one finds then that J ,  
- 20 A. (In addition, the results of Jenkins and Barratt [ lo] 
suggest that if the interfacial energy strongly prefers an 
azimuthal orientation at the boundary, then the critical 
field strength, and the associated current, may be 
significantly reduced.) 

The critical relationships derived from the non-linear 
static theory and the linear stability analysis based on the 
dynamical equations are in agreement. The linear theory 
provides a proof (via the ‘exchange of stabilities’ 
argument) that an instability must occur for H > H,: to 
deduce this within the non-linear static theory, one must 
apparently make additional assumptions (for example, 
that any other static distorted state will have a higher 
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A Freedericksz transition in an annulus 63 

energy associated with it). In addition, the linear theory 
shows that the component n, of nl in (43) is of smaller 
order than nm, which implies that the instability that arises 
for H 2 H ,  will involve no twisting of the director out of 
the local 4, z-plane, at least initially; this lends support to 
the choice of the form of solution ( 1  5) .  

Of course, only the non-linear theory is capable of 
describing how any distortion will eventually develop 
when H 2 H ,  (though the shape of the eigenfunctions from 
the linear theory may also give some indication of this). 
It is therefore interesting that the non-linear theory predicts 
that at least two distinct types of solution are possible, and 
that for an interfacial energy of the form (12), the type of 
solution that occurs depends on the sign of k24. Further 
solutions of the form (29)-(30) or (38)-(40) may prove 
useful in interpreting the behaviour of a nematic in the 
vicinity of polymer fibres, or of a nematic contained in 
the annular gap between a rigid cylinder and an isotropic 
core. 

We could equally have considered the situation where 
the applied field is radial, of the form H = ( H / r ,  0, 0), with 
H a  constant; it then transpires that the critical relation (5  1) 
again holds, but with h and /? now defined by 

(59) 
respectively, where 

Although such a magnetic field may be more difficult to 
establish experimentally, the analogous set-up involving 
a radially applied electric field should be easier to achieve, 
and the critical electric field strength satisfies relations 
precisely analogous to those for the magnetic field. 

Alternative feasible arrangements might involve a 
sample aligned azimuthally with a field applied axially, or 
a sample aligned radially with a field applied axially 

or azimuthally. However, additional mathematical com- 
plications arise for these set-ups; some of these complica- 
tions, evident in the paper by Palffy-Muhoray et al. [12], 
are associated with the fact that the initial equilibrium state 
is non-uniform, and purely mechanical instabilities can 
arise (which again permit a reduction in the field strength 
needed to induce a transition). Other complications arise 
in the linear stability analysis. In particular, in the case of 
an azimuthal configuration with the applied field axial, the 
equation that corresponds to (50) here has non-constant 
coefficients, and the critical field is not so straightfor- 
wardly obtainable. Analysis of this and similar set-ups are 
currently being pursued. 

The authors would like to acknowledge helpful 
comments from Professor F. M. Leslie. 
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